Posts Tagged ‘break ic source data’

PostHeaderIcon Break IC PIC16F914 Heximal

Break IC PIC16F914 Heximal

We can Break IC PIC16F914 Heximal, please view the IC PIC16F914 features for your reference:

Low-Power Features:

· Standby Current:

– <100 nA @ 2.0V, typical

· Operating Current:

– 11 ìA @ 32 kHz, 2.0V, typical

– 220 ìA @ 4 MHz, 2.0V, typical

· Watchdog Timer Current:

– 1 ìA @ 2.0V, typical when Break IC

Peripheral Features:

· Liquid Crystal Display module:

– Up to 60/96/168 pixel drive capability on 28/40/64-pin devices, respectively

– Four commons

· Up to 24/35/53 I/O pins and 1 input-only pin:

– High-current source/sink for direct LED drive after Break IC

– Interrupt-on-change pin

– Individually programmable weak pull-ups

· In-Circuit Serial Programming™ (ICSP™) via two pins

· Analog comparator module with:

– Two analog comparators

– Programmable on-chip voltage reference (CVREF) module (% of VDD) for the purpose of Break IC

– Comparator inputs and outputs externally accessible

· A/D Converter:

– 10-bit resolution and up to 8 channels

· Timer0: 8-bit timer/counter with 8-bit programmable prescaler

· Enhanced Timer1:

– 16-bit timer/counter with prescaler

– External Timer1 Gate (count enable) after Break IC

– Option to use OSC1 and OSC2 as Timer1 oscillator if INTOSCIO or LP mode is selected

· Timer2: 8-bit timer/counter with 8-bit period register, prescaler and postscaler

· Addressable Universal Synchronous Asynchronous Receiver Transmitter (AUSART)

· Up to 2 Capture, Compare, PWM modules:

– 16-bit Capture, max. resolution 12.5 ns

– 16-bit Compare, max. resolution 200 ns

– 10-bit PWM, max. frequency 20 kHz

· Synchronous Serial Port (SSP) with I2C™ when Break IC

 

Circuit Engineering Company Limited continues to be recognized as the Southern China Leader in Services for IC Attack, IC Break, Chip Extract, Microcontroller Unlock service. With the advancement of today’s modern circuit board technology, it is more important than ever to have specialists available to help you at a moment’s notice. Our engineering and commercial teams collectively have a vast amount of electronic experience covering field include Consumer Electronics, Industrial Automation Electronics, Wireless Communication Electronics., etc. For more information please contact us through email.

PostHeaderIcon Break IC ATTINY261 Code

We can Break IC ATTINY261 Code, please view the IC ATTINY261 features for your reference:

High Performance, Low Power AVR® 8-Bit Microcontroller

Advanced RISC Architecture

– 123 Powerful Instructions – Most Single Clock Cycle Execution

– 32 x 8 General Purpose Working Registers

– Fully Static Operation when Break IC

 

Non-volatile Program and Data Memories

– 2/4/8K Byte of In-System Programmable Program Memory Flash

 

(ATtiny261/461/861)

Endurance: 10,000 Write/Erase Cycles if Break IC

– 128/256/512 Bytes In-System Programmable EEPROM (ATtiny261/461/861)

Endurance: 100,000 Write/Erase Cycles

– 128/256/512 Bytes Internal SRAM (ATtiny261/461/861) before Break IC

– Programming Lock for Self-Programming Flash Program and EEPROM Data Security

Peripheral Features

– 8/16-bit Timer/Counter with Prescaler and Two PWM Channels

– 8/10-bit High Speed Timer/Counter with Separate Prescaler after Break IC

3 High Frequency PWM Outputs with Separate Output Compare Registers

Programmable Dead Time Generator

– Universal Serial Interface with Start Condition Detector when Break IC

– 10-bit ADC

11 Single Ended Channels

16 Differential ADC Channel Pairs

15 Differential ADC Channel Pairs with Programmable Gain (1x, 8x, 20x, 32x)

– Programmable Watchdog Timer with Separate On-chip Oscillator if Break IC

– On-chip Analog Comparator

Special Microcontroller Features

– debugWIRE On-chip Debug System

– In-System Programmable via SPI Port

– External and Internal Interrupt Sources before Break IC

– Low Power Idle, ADC Noise Reduction, and Power-down Modes

– Enhanced Power-on Reset Circuit

– Programmable Brown-out Detection Circuit

– Internal Calibrated Oscillator

I/O and Packages

– 16 Programmable I/O Lines after Break IC

– 20-pin PDIP, 20-pin SOIC and 32-pad MLF

Operating Voltage:

– 1.8 – 5.5V for ATtiny261V/461V/861V

– 2.7 – 5.5V for ATtiny261/461/861

Speed Grade:

– ATtiny261V/461V/861V: 0 – 4 MHz @ 1.8 – 5.5V, 0 – 10 MHz @ 2.7 – 5.5V when Break IC

– ATtiny261/461/861: 0 – 10 MHz @ 2.7 – 5.5V, 0 – 20 MHz @ 4.5 – 5.5V

– Active Mode: 1 MHz, 1.8V: 380ìA

– Power-down Mode: 0.1ìA at 1.8V

Typical values contained in this data sheet are based on simulations and characterization of other AVR microcontrollers manufactured on the same process technology. Min and Max values will be available after the device is characterized before Break IC.

The ATtiny261/461/861 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATtiny261/461/861 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed after Break IC.

PostHeaderIcon Break IC ATTINY2313 Code

We can Break IC ATTINY2313 Code, please view the IC ATTINY2313 features for your reference:

High Performance, Low Power AVR® 8-Bit Microcontroller

Advanced RISC Architecture

– 120 Powerful Instructions – Most Single Clock Cycle Execution

– 32 x 8 General Purpose Working Registers

– Fully Static Operation

– Up to 20 MIPS Throughput at 20 MHz

Data and Non-volatile Program and Data Memories

– 2/4K Bytes of In-System Self Programmable Flash

Endurance 10,000 Write/Erase Cycles

– 128/256 Bytes In-System Programmable EEPROM

Endurance: 100,000 Write/Erase Cycles

– 128/256 Bytes Internal SRAM when Break IC

– Programming Lock for Flash Program and EEPROM Data Security

Peripheral Features

– One 8-bit Timer/Counter with Separate Prescaler and Compare Mode

– One 16-bit Timer/Counter with Separate Prescaler, Compare and Capture Modes before Break IC

– Four PWM Channels

– On-chip Analog Comparator

– Programmable Watchdog Timer with On-chip Oscillator

– USI – Universal Serial Interface

– Full Duplex USART

Special Microcontroller Features

– debugWIRE On-chip Debugging

– In-System Programmable via SPI Port

– External and Internal Interrupt Sources

– Low-power Idle, Power-down, and Standby Modes

– Enhanced Power-on Reset Circuit if Break IC

– Programmable Brown-out Detection Circuit

– Internal Calibrated Oscillator

I/O and Packages

– 18 Programmable I/O Lines

– 20-pin PDIP, 20-pin SOIC, 20-pad MLF/VQFN

Operating Voltage

– 1.8 – 5.5V

Speed Grades

– 0 – 4 MHz @ 1.8 – 5.5V

– 0 – 10 MHz @ 2.7 – 5.5V

– 0 – 20 MHz @ 4.5 – 5.5V

Industrial Temperature Range: -40°C to +85°C

Low Power Consumption

In-System

Programmable Flash

– Active Mode

190 µA at 1.8V and 1MHz

– Idle Mode

24 µA at 1.8V and 1MHz before Break IC

– Power-down Mode

0.1 µA at 1.8V and +25°C

Port A is a 3-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port A output buffers have symmetrical drive characteristics with both high sink and source capability, except PA2 which has the RESET capability.

To use pin PA2 as I/O pin, instead of RESET pin, program (“0”) RSTDISBL fuse. As inputs, Port A pins that are externally pulled low will source current if the pull-up resistors are activated. The Port A pins are tri-stated when a reset condition becomes active, even if the clock is not running after Break IC.

PostHeaderIcon Break IC ATTINY85V Software

We can Break IC ATTINY85V Software, please view the IC ATTINY85V features for your reference:

XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier which can be configured for use as an on-IC oscillator, as shown in Figure 1. Either a quartz crystal or ceramic resonator may be used. To drive the device from an external clock source, XTAL2 should be left unconnected while XTAL1 is driven as shown in Figure 2. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum voltage high and low time specifications must be observed.

In idle mode, the CPU puts itself to sleep while all the on-IC peripherals remain active. The mode is invoked by software. The content of the on-IC RAM and all the special functions registers remain unchanged during Break IC.

Figure 2. External Clock Drive Configuration mode. The idle mode can be terminated by any enabled interrupt or by a hardware reset before Break IC. It should be noted that when idle is terminated by a hardware reset, the device normally resumes program execution, from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-IC hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write to a port pin when Idle is terminated by reset, the instruction following the one that invokes Idle should not be one that writes to a port pin or to external memory. In the power down mode the oscillator is stopped, and the instruction that invokes power down is the last instruction executed. The on-IC RAM and Special Function Registers retain their values until the power down mode is terminated.

The only exit from power down is a hardware reset. Reset redefines the SFRs but does not change the on-IC RAM. The reset should not be activated before VCC is restored to its normal operating level and must be held active long enough to allow the oscillator to restart and stabilize if Break IC.

PostHeaderIcon Break IC ATTINY45 Heximal

We can Break IC ATTINY45 Heximal, please view the  IC ATTINY45 features for your reference:

Port B is a 6-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running. Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running. The minimum pulse length is given in Table 23-3 on page 170. Shorter pulses are not guaranteed to generate a reset. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written. I/O Registers within the address range 0x00 – 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions when Break IC.

Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI instructions will only operation the specified bit, and can therefore be used on registers containing such Status Flags. The CBI and SBI instructions work with registers 0x00 to 0x1F only.

The ATTINY45 provides the following standard features:

20K bytes of Flash, 256-bytes of RAM, 32 I/O lines, three 16-bit timer/counters, a six-vector two-level interrupt architecture, a full duplex serial port, on-chip oscillator, and clock circuitry. In addition, the AT89C55 is designed with static logic for operation down to zero frequency and supports two software selectable power saving modes when Break IC.

The Idle Mode stops the CPU while allowing the RAM, timer/counters, serial port, and interrupt system to continue functioning. The Power Down Mode saves the RAM contents but freezes the oscillator, disabling all other chip functions until the next hardware reset. The low-voltage option saves power and operates with a 2.7-volt power supply if Break IC.

PostHeaderIcon Break IC ATTINY84 Heximal

We can Break IC ATTINY84 heximal, please view the IC ATTINY84 features for your reference:

The ATtiny13A is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATtiny13A achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed when Break IC.

The AVR core combines a rich instruction set with 32 general purpose working registers. All 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers if Break IC.

The ATtiny13A provides the following features: 1K byte of In-System Programmable Flash, 64 bytes EEPROM, 64 bytes SRAM, 6 general purpose I/O lines, 32 general purpose working registers, one 8-bit Timer/Counter with compare modes, Internal and External Interrupts, a 4-channel, 10-bit ADC, a programmable Watchdog Timer with internal Oscillator, and three software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counter, ADC, Analog Comparator, and Interrupt system to continue functioning before Break IC.

The Power-down mode saves the register contents, disabling all chip functions until the next Interrupt or Hardware Reset. The ADC Noise Reduction mode stops the CPU and all I/O modules except ADC, to minimize switching noise during ADC conversions before Break IC.

The device is manufactured using Atmel’s high density non-volatile memory technology. The On-chip ISP Flash allows the Program memory to be re-programmed In-System through an SPI serial interface, by a conventional non-volatile memory programmer or by an On-chip boot code running on the AVR core after Break IC.

The ATtiny13A AVR is supported with a full suite of program and system development tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators, and Evaluation kits after Break IC.

A comprehensive set of drivers, application notes, data sheets and descriptions on development tools are available for download at http://www.atmel.com/avr. This documentation contains simple code examples that briefly show how to use various parts of the device when Break IC.

These code examples assume that the part specific header file is included before compilation. Be aware that not all C compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent. Please confirm with the C compiler documentation for more details when Break IC.

Reliability Qualification results show that the projected data retention failure rate is much less than 1 PPM over 20 years at 85°C or 100 years at 25⋅C.

PostHeaderIcon Break IC ATMEGA128V Heximal

We can Break IC ATMEGA128V Heximal, please view the IC ATMEGA128V features for your reference:

The general I/O port function is overridden by the Output Compare (OCnx) from the Waveform Generator if either of the COMnx1:0 bits are set. However, the OCnx pin direction (input or output) is still controlled by the Data Direction Register (DDR) for the port pin when break IC heximal.

The Data Direction Register bit for the OCnx pin (DDR_OCnx) must be set as output before the OCnx value is visible on the pin. The port override function is generally independent of the Waveform Generation mode, but there are some exceptions if break IC heximal.

The design of the Output Compare pin logic allows initialization of the OCnx state before the output is enabled. Note that some COMnx1:0 bit settings are reserved for certain modes of operation before break IC heximal.

The Waveform Generator uses the COMnx1:0 bits differently in normal, CTC, and PWM modes. For all modes, setting the COMnx1:0 = 0 tells the Waveform Generator that no action on the OCnx Register is to be performed on the next compare match when break IC heximal.

A change of the COMnx1:0 bits state will have effect at the first compare match after the bits are written. For non-PWM modes, the action can be forced to have immediate effect by using the FOCnx strobe bits before break IC heximal.

The mode of operation, i.e., the behavior of the Timer/Counter and the Output Compare pins, is defined by the combination of the Waveform Generation mode (WGMn3:0) and Compare Output mode (COMnx1:0) bits after break IC heximal.

The Compare Output mode bits do not affect the counting sequence, while the Waveform Generation mode bits do. The COMnx1:0 bits control whether the PWM output generated should be inverted or not (inverted or non-inverted PWM) when break IC heximal.

For non-PWM modes the COMnx1:0 bits control whether the output should be set, cleared or toggle at a compare match.

PostHeaderIcon Break IC ATMEGA1280A Binary

We can Break IC ATMEGA1280A Binary, please view the IC ATMEGA1280A features for your reference:

The 16-bit Timer/Counter unit allows accurate program execution timing (event management), wave generation, and signal timing measurement. The main features are:

True 16-bit Design (i.e., Allows 16-bit PWM)

Three independent Output Compare Units

Double Buffered Output Compare Registers when break IC binary

One Input Capture Unit

Input Capture Noise Canceler

Clear Timer on Compare Match (Auto Reload)

Glitch-free, Phase Correct Pulse Width Modulator (PWM)

Variable PWM Period

Frequency Generator

External Event Counter

Twenty independent interrupt sources (TOV1, OCF1A, OCF1B, OCF1C, ICF1, TOV3,

OCF3A, OCF3B, OCF3C, ICF3, TOV4, OCF4A, OCF4B, OCF4C, ICF4, TOV5, OCF5A, OCF5B, OCF5C and ICF5) if break IC binary

Most register and bit references in this section are written in general form. A lower case “n” replaces the Timer/Counter number, and a lower case “x” replaces the Output Compare unit channel. However, when using the register or bit defines in a program, the precise form must be used, i.e., TCNT1 for accessing Timer/Counter1 counter value and so on after break IC binary.

A simplified block diagram of the 16-bit Timer/Counter is shown in Figure 49. For the actual placement of I/O pins, see “Pinout ATmega640/1280/2560” on page 2 and “Pinout ATmega1281/2561” on page 3. CPU accessible I/O Registers, including I/O bits and I/O pins, are shown in bold before break IC binary.

The device-specific I/O Register and bit locations are listed in the “16-bit Timer/Counter Register Description”.

The Power Reduction Timer/Counter1 bit, PRTIM1, in “Power Reduction Register 0 – PRR0” on page 54 must be written to zero to enable Timer/Counter1 module when break IC binary.

The Power Reduction Timer/Counter3 bit, PRTIM3, in “Power Reduction Register 1 – PRR1” on page 55 must be written to zero to enable Timer/Counter3 module.

The Power Reduction Timer/Counter4 bit, PRTIM4, in “Power Reduction Register 1 – PRR1” on page 55 must be written to zero to enable Timer/Counter4 module if break IC binary.

The Power Reduction Timer/Counter5 bit, PRTIM5, in “Power Reduction Register 1 – PRR1” on page 55 must be written to zero to enable Timer/Counter5 module.

Timer/Counter4 and Timer/Counter5 only have full functionality in the ATmega640/1280/2560.

The Timer/Counter (TCNTn), Output Compare Registers (OCRnA/B/C), and Input Capture Register (ICRn) are all 16-bit registers before break IC binary.

Special procedures must be followed when accessing the 16-bit registers. These procedures are described in the section “Accessing 16-bit Registers” on page 137. The Timer/Counter Control Registers (TCCRnA/B/C) are 8-bit registers and have no CPU access restrictions after break IC binary.

Interrupt requests (shorten as Int.Req.) signals are all visible in the Timer Interrupt Flag Register (TIFRn). All interrupts are individually masked with the Timer Interrupt Mask Register (TIMSKn). TIFRn and TIMSKn are not shown in the figure since these registers are shared by other timer units when break IC binary.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on the Tn pin. The Clock Select logic block controls which clock source and edge the Timer/Counter uses to increment (or decrement) its value. The Timer/Counter is inactive when no clock source is selected. The output from the clock select logic is referred to as the timer clock (clkTn) if break IC binary.

The double buffered Output Compare Registers (OCRnA/B/C) are compared with the Timer/Counter value at all time. The result of the compare can be used by the Waveform Generator to generate a PWM or variable frequency output on the Output Compare pin (OCnA/B/C). See “Output Compare Units” on page 144.. The compare match event will also set the Compare Match Flag (OCFnA/B/C) which can be used to generate an Output Compare interrupt request.